Skip to content

Implementation of the K-Means Algorithm on Heterogeneous Devices: A Use Case Based on an Industrial Dataset

This paper presents and analyzes a heterogeneous implementation of an industrial use case based on K-means that targets symmetric multiprocessing (SMP), GPUs and FPGAs. We present how the application can be optimized from an algorithmic point of view and how this optimization performs on two heterogeneous platforms. The presented implementation relies on the OmpSs programming model, which introduces a simplified pragma-based syntax for the communication between the main processor and the accelerators. Performance improvement can be achieved by the programmer explicitly specifying the data memory accesses or copies. As expected, the newer SMP+GPU system studied is more powerful than the older SMP+FPGA system. However the latter is enough to fulfill the requirements of our use case and we show that uses less energy when considering only the active power of the execution.