
D4.6– Intermediate report on OmpSs extensions and storage tuning
Version 1.0

Document Information

Contract Number 610402

Project Website www.montblanc-project.eu

Contractual Deadline M24

Dissemination Level PU

Nature Report

Authors Ramon Nou (BSC), Xavier Martorell (BSC)

Contributors Toni Cortes (BSC), Guray Ozen, Diego Nieto (BSC), Javier Bueno
(BSC)

Reviewers Jose Gracia (USTUTT)

Keywords OmpSs Extensions, resource limits, OpenCL profiler,
OmpSs@cluster, Storage tuning

Notices: The research leading to these results has received funding from the European Community’s Seventh

Framework Programme (FP7/2007-2013) under grant agreement no 610402.

c©Mont-Blanc 2 Consortium Partners. All rights reserved.

D4.6 - Intermediate report on OmpSs extensions and storage tuning
Version 1.0

Change Log

Version Description of Change

v0.1 Adding Partial Stripe Avoidance

v0.2 Adding OmpSs extensions

v1.0 Final version

2

D4.6 - Intermediate report on OmpSs extensions and storage tuning
Version 1.0

Contents

Executive Summary 4

1 OmpSs extensions 5
1.1 Resource extension . 5

1.1.1 Task Directive Syntax Extension . 5
1.1.2 Runtime support for resources . 5
1.1.3 Evaluation . 6

1.2 OpenCL dynamic profiling . 7
1.3 Evaluation of OmpSs@cluster . 9
1.4 Conclusions and Future Work . 10

2 Storage Optimizations 11
2.1 Partial Stripe Avoidance . 12
2.2 Advanced Avoidance: Delayed Parity . 12
2.3 Evaluation . 13

2.3.1 RAID-5 Results . 15
2.3.2 RAID-6 Results . 15
2.3.3 Related work . 16

2.4 Conclusions and Future Work . 16

3

D4.6 - Intermediate report on OmpSs extensions and storage tuning
Version 1.0

Executive Summary

For the OmpSs extensions part, in this deliverable we present three developments we have done
in OmpSs. First, we have incorporated a resource specification in the programming model to
allow programmers to tune the use of cores and devices in the execution of OmpSs tasks. As a
result, the programmer can better guide the runtime to use more or less resources of a specific
type and get better performance. In the second place, we have extended OmpSs to provide
the capability to profile the execution of the OpenCL kernels to determine the most suitable
kernel configuration. The Mercurium compiler allows to specify the ranges of values that should
be analyzed, and the Nanos++ runtime does the exploration. Finally, in the third place, we
have further evaluated the performance of the OmpSs@cluster programming model, with 4 new
benchmarks in the Mont-Blanc prototype.

For the storage tuning part, we continued the simulation of the Mont-Blanc environment to
explore the effects over I/O of parity on the Parallel File System layer among storage servers. On
Exascale systems, the parallel file system should move from a replication configuration to a more
space and energy efficient parity-based reliability. The approach presented in this deliverable,
is a application guided optimization over realibility based-filesystem. By introducing a new
I/O hint, we can write data that only needs to be reliable once it is completed without the
performance impact of the parity calculations and updates. Due to the lack of filesystems with
the needed reliability characteristics and the lack of the needed storage system, we are still
using simulation for the evaluation. The storage part has been published on Europar’15 with
the title Performance Impacts with Reliable Parallel File Systems at Exascale Level [9].

4

D4.6 - Intermediate report on OmpSs extensions and storage tuning
Version 1.0

1 OmpSs extensions

1.1 Resource extension

We have found that when using various implementations of the same task in both SMP and
accelerator architectures, the free scheduling of tasks onto SMP and accelerators may cause
imbalance, specially when the difference between the performance of the accelerators and the
SMP cores is large.

In order to overcome this problem, we have introduced an additional feature to the imple-

ments technique, in order to limit the amount of tasks assigned to each type of resource at the
same time.

This extension involves the Mercurium compiler and the Nanos++ runtime. Mercurium
has been modified to allow the specification of the resources that are consumed by each target
architecture, when the tasks are defined. The Nanos++ runtime allows the definition of the
resources that are available for each architecture, and the scheduling policies control not to
assign more resources of a task onto an architecture than those allowed.

1.1.1 Task Directive Syntax Extension

We propose to extend the task construct with a new resources clause to give hints to the
runtime system to appropriately balance the scheduling of tasks to the different devices in the
system. Figure 1 shows the proposed syntax extension.

#pragma omp task [clauses]

[resources(resource-name : resource-amount-expression)]

structured-block

Figure 1: Syntax of new resources support

The information provided by the programmer in the resources clause is passed to the
runtime system as a parameter of the task creation.

1.1.2 Runtime support for resources

Available resources are defined at execution time using a Nanos++ call, nanos register -

resource(resource-name, quantity). The name assigned to a resource must agree with
the ones used in the task clauses, and there are no special keywords or reserved names, since
resources are purely logical and do not map to any OS or hardware component. Regarding
the quantity, there are no limitations other than positive integer numbers. This value can be
changed dynamically with successive calls to nanos register resource.

Before the Nanos++ runtime executes a task, it decrements the number of resources con-
sumed by the amount specified in the task directive, if any, from the global value that has been
set at the beginning with the nanos register resource(resource-name, quantity) call.
If the resulting value is negative, the execution is postponed, and the task is kept in the ready
queue, waiting for other tasks also consuming the same resource to finish. When a task that is
consuming a resource finishes, the amount of available resources is increased, and in this way,
other tasks trying to consume from the same resource may proceed to execution.

5

D4.6 - Intermediate report on OmpSs extensions and storage tuning
Version 1.0

1.1.3 Evaluation

We have used the Jetson TK1 environment for the evaluation of the resources extension.
Table 1 shows the characteristics of the Jetson platform.

Processor Memory Nvidia GPU

Nvidia Jetson TK1 SoC
4-core Cortex-A15 up to 2.5GHz

2 GB
1 x GK20A
(Kepler, 192 cores)

Table 1: Jetson TK1 system configuration

Figure 2 shows the evaluation of the Nbody benchmark on the Jetson TK1 environment.
For this execution, the CUDA version of Nbody is used. In order to use the SMP cores and the
GPU, the benchmark spawns a first level of tasks using the implements clause. If the GPU is
selected for execution, the task is executed in the GPU. If the SMP is selected for execution,
the task spawns additional tasks to exploit all SMP cores.

We run the benchmark in four different configurations. The 4 cores configuration used the
4 A15 cores available in the Jetson TK1 node, with no limitations on the number of resources
used by the Nbody tasks. In this configuration all tasks are executed on the SMP cores (target
device(smp)).

In the 1 GPU configuration, Nbody executes all tasks in the Nvidia GPU, again with no
resource limits (target device(cuda)). As it can be observed, the performance obtained by
the benchmark is much higher, because the tasks obtain more performance from the GPU than
from the A15 cores.

In the 4 cores, 1 GPU configuration, Nbody is allowed to use both the A15 cores and
the GPU. This version is written using the implements clause on the GPU tasks (target
device(cuda), as an alternative execution to the SMP tasks (target device(smp)). Although
the programmer may expect an increase in the performance, compared to the version using the
GPU only, it is not the case because as soon as an A15 core gets an SMP task, it spends
too much time executing it, and the GPU manages to finish with the rest of the tasks of the
benchmark. This way, the A15 core delays the end of the execution.

The solution to this problem is to only allow a certain number of tasks to be executed by
the A15 cores. The configutation used to achieve this is 4 cores, 1 GPU, Resources, where the
amount of resources assigned to the SMP cores are limited to 5 tasks. In this conditions, the
A15 cores do not execute tasks so aggresively as in the previous configuration, and they help
the GPU in solving the problem faster.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Nbody benchmark

M
F

lo
p

/s

Figure 2: Evaluation of the resources extension with Nbody on Jetson

6

D4.6 - Intermediate report on OmpSs extensions and storage tuning
Version 1.0

Figure 3 shows the execution timelines of three different configurations of resource assign-
ments to Nbody. The top timeline shows the execution when the resource assignment is free.
In this situation, the SMP cores get too many top level tasks, that are then split in smaller
tasks, and the GPU is not given the opportunity to execute them. Collecting statistics from
an execution, we determined that the GPU was executing 9 top level tasks, and the rest 1006
went to be executed on the SMP cores.

In the intermediate timeline, the resources available on the SMP are limited to the execution
of a single top level task, that is still split in inner level tasks. In this situation, the GPU has
more opportunities to get tasks, and the overall execution achieves better performance.

In the bottom timeline, we have manually tuned the amount of top level tasks, setting it
to 5, which is the amount that achieves best overall performance. As a matter of comparison,
collecting statistics from an execution, we determined that the GPU was executing 340 top
level tasks, while the rest 344 went to be executed on the SMP cores. Currently, the resource
assignment is static. It is part of our future work to investigate how to determine automatically
the amount of resources of each architecture that achieves better performance.

Figure 3: Comparison of the executions of Nbody with and without the resources extension
on Jetson

1.2 OpenCL dynamic profiling

OpenCL kernels need to be configured appropriately in the GPU to get good performance. This
task is usually done by the programmer as a tuning process which is time consuming. In order
to alleviate this problem, we have developed a new OmpSs extension to perform the automatic
evaluation of OpenCL kernel configurations.

The profiler is based on extensions at the compiler level. The ndrange clause in the target

directive has been extended with a new syntax that allows to express ranges for the local work
group sizes. The original ndrange syntax is the following:

#pragma omp target device(opencl) \

ndrange (dimensions, N, M, ..., lwgs1, lwgs2, ...)

where N, M... are the complete dimension sizes of the data structure at work. lwgs1, lwgs2...
are the block sizes in which N, M... are split. lwgs stands for local work group size, and it is

7

D4.6 - Intermediate report on OmpSs extensions and storage tuning
Version 1.0

usually set such that it fits well con the GPU cores. With the new syntax, the compiler allows
to use a formula to express a range of values for each lwgs. This range of values is then passed
to the Nanos++ runtime, allowing to do an exploration of the performance obtained with the
different combinations of values. The newly incorporated ndrange syntax is the following:

#pragma omp target device(opencl) \

ndrange (dimensions, N, M, ..., {/ (1 << v), v = lower0:upper0 /}, \

{/ (1 << v), v = lower1:upper1 /}, ...)

When using this new syntax, the Mercurium compiler generates the code that implements
the evaluation of the OpenCL kernel with all the combinations of lower and upper values for
the number of dimensions provided. As OpenCL does, the number of dimensions is restricted
to be between 1 and 3.

As an example of use, Figure 4 shows how to annotate the kernel task of matrix multiply
in order to use the OpenCL profiler. With the presented annotation, the combinations of block
sizes that will be tried are 16x16, 16x32,32x16, and 32x32.

#pragma omp target device(opencl) copy_deps file(matrixMul.cl) \

ndrange(2, nrows, ncols, \

{/ (1 << i), i = 4:5 /}, {/ (1 << i), i = 4:5 /})

#pragma omp task in([nrows*ncols]a,[nrows*ncols]b) out([nrows*ncols]c)

void mxm_kernel(float* c,float* a, float* b, int nrows, int ncols);

Figure 4: Use of the OpenCL profiler from the application source code

As a result of executing matrix multiplication with this annotation, the runtime system uses
the information provided to explore the four combinations of sizes in the X and Y dimensions,
obtaining the results shown in Figure 5.

16x16 16,32 32,16 32,32
0

0.5

1

1.5

2

2.5

3

Matrix Multiplication benchmark

Profiling results

OpenCL kernel configuration

E
xe

cu
tio

n
tim

e
(s

.)

Figure 5: Evaluation of the OpenCL profiler with Matrix Multiplication

After executing the benchmark, the programmer may decide to use the configuration ob-
taining better results, thus replacing the ndrange expressions, with the actual values, (32, 16)
in this example.

8

D4.6 - Intermediate report on OmpSs extensions and storage tuning
Version 1.0

1.3 Evaluation of OmpSs@cluster

We have evaluated the cluster version of OmpSs with the additional benchmarks NAS EP,
SparseLU, PTRANS, and FFT. Executions use up to 32 nodes on the Mont-Blanc Cluster.
On each node, one core is used for computing, and the other one is used for supporting the
communications. These are the results obtained.

Figure 6 shows the results of the NAS EP benchmark (Class C) when run on the Mont-Blanc
cluster, from 1 to 32 nodes.

1 2 4 8 16 32
0

200

400

600

800

1000

1200

1400

EP class C

nodes

tim
e

 (
s

)

Figure 6: NAS EP benchmark

Figure 7 shows the results of the SparseLU benchmark on a matrix of 8Kx8K elements,
with a block size of 256x256 elements, when run on the Mont-Blanc cluster, from 1 to 32 nodes.
The plot shows how the benchmark scales. It has limited scalability because of the imbalanced
nature of the benchmark and the increase in the amount of data transfers compared to the EP
benchmark.

1 2 4 8 16 32
0

20

40

60

80

100

120

140

160

180

SparseLU 8192x8192, double precision, block size=256x256

nodes

tim
e

 (
s

)

Figure 7: SparseLU benchmark (matrix size 8K x 8K)

Figure 8 shows the results when increasing the matrix size to 16Kx16K and the block size
to 512x512 elements. In this case, the results obtained are less uniform due to the increase in
the block size, which causes an increase of the imbalance, specially when run on 4 and 32 nodes.
We will work more on this particular benchmark to try to solve this issue.

Figure 9 shows the results of the PTRANS benchmark with two different matrix and block
sizes, when run on the Mont-Blanc cluster, from 2 to 32 nodes. For both sizes, the scalability
of PTRANS is very limited due to the communication pattern.

9

D4.6 - Intermediate report on OmpSs extensions and storage tuning
Version 1.0

16x16 16,32 32,16 32,32
0

0.5

1

1.5

2

2.5

3

Matrix Multiplication benchmark

Profiling results

OpenCL kernel configuration

E
xe

cu
tio

n
tim

e
(s

.)

1 2 4 8 16 32
0

200

400

600

800

1000

1200

1400

1600

SparseLU 16k x 16k doubles, bs=512x512

nodes

tim
e

 (
s

)

Figure 8: SparseLU benchmark (matrix size 16K x 16K)

1 2 4 8 16 32
0

2

4

6

8

10

12

FFT benchmark

2Kx2K (64x64)

4Kx4K (128x128)

Number of nodes

E
xe

cu
tio

n
 ti

m
e

 (
s

.)

2 4 8 16 32
0

1

2

3

4

5

6

7

PTRANS benchmark

4Kx4K (128x128)

8Kx8K (512x512)

Number of nodes

E
xe

cu
tio

n
 ti

m
e

 (
s

.)

Figure 9: PTRANS benchmark

Figure 10 shows the results of the FFT benchmark with two matrix sizes, when run on
the Mont-Blanc cluster, from 1 to 32 nodes. The scalability is also limited as in the case of
PTRANS, as FFT involves several matrix transpositions. We will study better the behaviour of
PTRANS and FFT to determine if these results can be improved in the Mont-Blanc prototype.

1.4 Conclusions and Future Work

We have presented three OmpSs extensions that we are developing in the context of Mont-Blanc
2 project. The OmpSs Resource extension allows to better balance the distribution of tasks to
the different devices available (SMP cores, GPUs), and we have shown that it allows to obtain
better performance because it allows to balance the progress done by the GPU and the SMP
cores on the tasks spawned at the top level.

The second extension, the OpenCL profiler, allows to use OmpSs to profile the OpenCL
kernel configuration, and select the one that provides best performance. Finally, we have also
evaluated the OmpSs@cluster alternative to execute applications across nodes using a single
programming model. We have shown that benchmarks scale, although we have still work to
do to analyze their execution, determine the actual bottlenecks that limit their scalability and
improve their execution if possible.

As our future work, we plan to introduce the use of the three OmpSs extensions in our
trainings of the project, thus allowing the project partners to use them, while we tune their
implementations for achieving better performance.

10

D4.6 - Intermediate report on OmpSs extensions and storage tuning
Version 1.0

1 2 4 8 16 32
0

2

4

6

8

10

12

FFT benchmark

2Kx2K (64x64)

4Kx4K (128x128)

Number of nodes

E
xe

cu
tio

n
 ti

m
e

 (
s

.)

Figure 10: FFT benchmark

2 Storage Optimizations

Given the strong constraints on energy efficiency imposed on Exascale clusters [15, 11, 1], the
current replication techniques used by parallel file systems (PFSs) to increase reliability and
availability (where several copies of each datum are kept in independent storage nodes) can
represent a huge penalty, since they multiply the investment and energy costs in the storage
layer.

Parity based-reliability, where mathematical checksums are computed and stored to recover
failed data, is a more suitable method in this scenario since it uses less storage resources than
replication. As such, as we explained in the previous deliverable D4.2 [7] , there is an increasing
interest to support node-wide RAID-5/6 reliability schemes in current PFSs. For instance,
Lustre [2] is planning to support file-level replication, and this technique can already be found
in Gluster [4]. On the other hand, Panasas (with PanFS [8]) supports object/file level RAID
configurations using triple parity data [10], and GPFS [13] also supports a similar configuration
with the declustered array technique.

Unfortunately, an increase in the number of I/O requests will also affect traditional parity-
based reliability techniques. Increasing the number of data writes will accentuate the partial
stripes and small writes problems [14] that typically affect these strategies: a small change to
a datum will force the parity checksum to be recomputed and stored, which requires additional
I/O operations as well as computation. Thus, introducing these node-wide reliability strategies
into Exascale storage can cause a performance impact: updating a datum in RAID-5 requires
four I/O requests (reading the original datum and the old parity and writing the new datum
and the new parity) and six I/O requests in RAID-6 (as it uses two parity checksums). As
we will show later, even though these additional requests can be distributed between storage
servers to be processed in parallel, they can represent a loss of performance of up to 85% for
update operations when compared to storing raw data.

In this situation, it seems clear that optimizations over RAID parity calculations are needed
to remove or alleviate this performance penalty and provide Exascale storage systems with
alternatives for reliability. In this deliverable we propose a novel method (Delayed Parity) that
takes advantage of the collaboration between the PFS and the clients and, using this layer,
allows applications to delay parity computations. The analysis and design is evaluated with a
simulator, using a write-only workload to focus on the issue that we are solving (read operations
are not affected negatively).

11

D4.6 - Intermediate report on OmpSs extensions and storage tuning
Version 1.0

2.1 Partial Stripe Avoidance

In this section, we will explain the advanced strategy proposed to reduce the Partial Stripe
Avoidance problem. As a change over the previous deliverable we renamed the Write Cache
Server (WCS) to Write Cache Layer (WCL) as it better suits how it works.

As a summary of the previous deliverable [7], Figure 11 shows the parity update workflow
of the basic avoidance technique when compared to vanilla RAID-5. The technique reduces
the congestion in Data OSSs by removing one (or two in RAID-6) data reads, hence reducing
the number of operations when writing new data by 25% in RAID-5 and 16% in RAID-6 and
obtaining a similar performance gain.

WCL

Cache Zone

Original Zone

1. Write

PFS Layer

WCL

Cache Zone

Original Zone

3.Parity (new
data)

PFS Layer

2. Write Data 4. Calculate new parity

5. Eviction5. Eviction

OSS

Figure 11: Basic Avoidance Technique

2.2 Advanced Avoidance: Delayed Parity

One of the most used fault tolerance mechanism in HPC applications is checkpointing, an
operation that stores the current status of all processes creating an opportunity to restore the
application in case of failure. Due to the continuous writes needed to save the state, this
particular operation issues many parity update requests to maintain the reliability. However, is
such reliability really needed? Consider for instance that the system fails in the middle of the
checkpointing: the application could recover using a previous checkpoint and delete the partial-
checkpoint file, rendering the parity computations for the partial checkpoint useless. This also
applies to long computations like matrix multiplications (e.g., MADCAP, on MADBench2 [3]).
A failure in the middle of the computation would require it to be restarted again from the
beginning, hence the partially stored data would be discarded and the parity calculations would
become an avoidable overhead. We can envision a lot of HPC applications that could make use
of such functionality, since reprocessing a chunk would be less costly than the cost over all the
system to store all the data in a reliable way compared to doing it when the process completes.

Using this idea, we propose the START DELAYED and END DELAYED hints to mark this kind of
candidate operations, delaying the parity calculations until all the writes are completed. When
the WCL receives a START DELAYED hint, redirects all write operations to the caching zone and
disables the parity computations for this data. Once the corresponding END DELAYED hint is
received, the WCL computes the parities of all the full stripes affected by the hints, and moves
(rewrites) the data to its original location in the OSS. As a result, the PFS can avoid using the

12

D4.6 - Intermediate report on OmpSs extensions and storage tuning
Version 1.0

WCL OSSD1 OSSD2 OSSP1

START_DELAYED

Write phase
Write Data (32 KiB)

Write (32 KiB)

Write Data (32 KiB)
Write (32 KiB)

Parity Phase

END_DELAYED
Trigger parity update

Parity calculation Read Parity (64 KiB)

Read (32 KiB)

Read (32 KiB)

Done
Done

Write Parity (64 KiB)

Done
Done

Figure 12: Delayed Parity: Clients issue two writes and then the parity is calculated. The
writes are aligned so they end at the same Parity OSS but at sequential positions. Due to this
alignment, the parity calculation can be consolidated.

Parity OSSs during the creation of the data and, when parities are calculated, it only needs to
send them the consolidated writes.

Figure 12 shows a simplified sequence diagram for the delayed parity technique. In that
example, 2 clients issue a 32 KiB write and then their parity is calculated. The writes are
directed to different data OSS, but the same Parity OSS. Parity blocks are sequential, and
hence parity updates can be consolidated.

The WCL supports synchronous parity calculations, but can also advance the calculation in
the background to reduce time. However, advancing the calculation may generate extra work
if the calculation is not needed (i.e., application cancellation or error in the client). In short,
the delayed parity technique can be represented as a collective operation between all clients,
but without increasing intermediate memory requirements since partial data will be written to
disk.

2.3 Evaluation

The simulated application uses a set of clients issuing writes to the I/O layer. During a single
simulation run, the datum size of write operations is fixed for all the clients and the writes are
distributed along a different file per application to avoid overwrites. Each client writes enough
data to produce a statistically representative number of parity calculations. The behaviours
of the applications simulated mimic that of the FLASH application [6], a computational tool
for simulating and studying thermonuclear reactions, that periodically outputs large checkpoint
files and smaller plot files. For the Delayed Parity evaluation, one process of each application
acts as master issuing the new hints and all the clients wait until the parity is calculated.

Workloads with mixed block sizes were only tested with a low number of devices, as the
cost of generating the statistical device model was too high (it is necessary to attempt all

13

D4.6 - Intermediate report on OmpSs extensions and storage tuning
Version 1.0

the possible combinations of request sizes, which grows exponentially). This is an important
drawback of modelling the storage devices without a simulator. Nevertheless, we did not find
significant differences between these simulated workloads in systems with the large number of
clients targeted in the paper. The same also applies to different stripe sizes.

We decided to use this workload in order to concentrate on the effect of typical HPC writes
over the proposed reliability techniques. Nevertheless, we also checked other workloads, which
showed similar results. In particular, our preliminary results using mixed workloads (with reads
and writes), showed improvements in the performance on read operations since the proposed
techniques favoured a reduction of the overhead on the storage devices. Due to space limitations,
we will not discuss these results further.

0

1

2

3

4

0

1

2

3

4

H
D

D
S

S
D

000 100 200 300 400 500
I/O CLIENTS in 1000

G
lo

ba
l B

W
 s

pe
ed

up

METHOD RAID 0 STD DelayedWCL

(a) Weak-Scaling

0

2

4

6

0

2

4

6

H
D

D
S

S
D

0 100 200 300 400 500
I/O CLIENTS in 1000

G
lo

ba
l B

W
 s

pe
ed

up

METHOD RAID 0 STD DelayedWCL

(b) Weak-Scaling

0

1

2

3

4

0

1

2

3

4

H
D

D
S

S
D

0 100 200 300 400 500
I/O CLIENTS in 1000

G
lo

ba
l B

W
 s

pe
ed

up

METHOD RAID 0 STD DelayedWCL

(c) Strong-Scaling

0

2

4

6

0

2

4

6

H
D

D
S

S
D

0 100 200 300 400 500
I/O CLIENTS in 1000

G
lo

ba
l B

W
 s

pe
ed

up

METHOD RAID 0 STD DelayedWCL

(d) Strong-Scaling

Figure 13: RAID-5 (left) and RAID-6 (right) write bandwidth w.r.t. STD-RAID.

To assess the effectiveness of the novel strategies, we repeat each measurement with different
seeds, that control how requests are mapped into each storage device. Each simulation run stops
when we have a minimum of 1000 seconds of simulated time, other variables are tracked to assess
that the results are representative. In the following experimental results, RAID-0 represents
the performance obtained from the OSSs when there are no parity calculations. STD-RAID
represents a standard striped RAID with parity and without optimizations. Finally, our two
proposals are WCL (already presented on D4.2 [7], and that we will not explain on this one)
and Delayed Parity. If not specified, the results are scaled relative to STD-RAID for each x-axis
point. We use 512 OSSs in all the experiments with a stripe unit of 1MiB and a width of 512
OSSs.

We measure the results in two different ways: using Weak-Scaling and using Strong-Scaling.
Weak-Scaling means that the problem size increases with the number of clients and thus, re-
gardless of the number of clients, each one will process the same amount of data (128 KiB per
data write). Conversely, in Strong-Scaling the number of clients is increased, but the problem
size is kept. Consequently, this increases the network and storage congestion due to I/Os when
the number of clients increases, due to the higher number and smaller size of requests. In this

14

D4.6 - Intermediate report on OmpSs extensions and storage tuning
Version 1.0

scenario, the data writes grow from 8 KiB to 1MiB according to the number of clients in the
simulation. For all the scenarios, the data is partitioned to avoid overwrites according to their
block size. We analyse the outcome of the new techniques using RAID-5 in Subsection 2.3.1
and RAID-6 in Subsection 2.3.2.

2.3.1 RAID-5 Results

This section describes the measured results of our simulations when reliability is implemented
using RAID-5 (i.e., one parity checksum per stripe).

Weak-Scaling results. Each client writes 128 KiB per write distributed along a file avoiding
overwrites with other clients. As we can see on the Delayed Parity proposal, the strategy reduces
the number of writes on the corresponding Parity OSS for each row of the file (m−1 vs 1, where
m are the OSSs involved) w.r.t. the WCL strategy, but we increase the reads in the data OSSs
(0 vs m − 1) as we need to transfer the data to the parity node to calculate the parity (see
Figure 12). If we take a look at the number of accesses per Data OSS and Parity OSS, we
observe that only one access is needed to the Data OSS with WCL (to write) and two with the
Delayed Parity approach (to write and to read in order to calculate the parity). On the other
hand, using the WCL approach requires a parity for each write (a read and a write to the Parity
OSS), whereas with the Delayed Parity approach the parity only needs to be generated when
all operations have completed (i.e., a maximum of two accesses to the OSSs).

As we can see in Figure 13.a, the benefit of the Delayed Parity strategy depends on the
cost of the operations in the device. In that Figure, with less than 80,000 clients, the required
time to complete the described operations on the HDD devices surpasses the reduction on the
number of operations. As a result, the performance with Delayed Parity with a low number
of clients is comparable to the WCL strategy, but without the reliability of RAID-5 (as the
parity is calculated at the end). Despite this result, the general behaviour is for performance
to grow up close to RAID-0, as we remove a big number of parity updates producing a higher
throughput.

Strong-Scaling Results. The experiments done with Strong-Scaling (see Figure 13.c.) are
similar to the Weak-Scaling ones. Using the Delayed Parity technique, we observe perfor-
mance improvements due to the fact that the number of parity updates is reduced greatly
as the number of clients increases. For instance, with 250K clients, we do not issue a parity
update until all the clients of an application have stored their 16KiB to the devices, which
means that we go from 250K parity updates (clients × appl. iterations) to 1.7K parity up-

dates (clients
clients per appl. × appl. iterations). Actually, the performance obtained differs when

using HDD or SSD technology (as in Weak-Scaling). On HDDs, the Delayed Parity achieves
less performance, thus it may be preferable to avoid using this strategy for a small number of
clients.

2.3.2 RAID-6 Results

In this experiments we have selected two horizontal parity devices per stripe for RAID-6, as we
did in the previous deliverable.

Weak-Scaling results. As we can observe in Figure 13.b, we found that the Delayed Parity
option offers a bigger performance boost on RAID-6 since we now have two parity devices, and

15

D4.6 - Intermediate report on OmpSs extensions and storage tuning
Version 1.0

we move from two parity updates per write to two parity updates per application iteration
(START-END hint).

Strong-Scaling results. For Strong-Scaling results with RAID-6 we obtain similar results
to RAID-5 (see Figure 13.d). Like with RAID-5 results, the block size is important on the
simulated scenarios for Delayed Parity. In that particular experiment, we can see the same
performance loss found on RAID-5 with HDD devices. However, the performance improvement
compared to the WCL proposal is bigger even with a lower number of clients since parity
updates are more expensive in RAID-6 than in RAID-5. Thus, removing them (more precisely,
grouping and delaying them) produces bigger improvements. In general, since the performance
loss of STD-RAID w.r.t. RAID-0 is much higher for RAID-6, the potential gain of the Delayed
Parity strategy is higher.

2.3.3 Related work

Delayed Parity Calculation. About our delayed parity proposal, a similar approach is
found in NetApp [5] where writes are buffered to issue an improved write operation. Also, at
AFRAID [12] they move the parity calculation to idle periods to obtain a performance boost.
The main difference of our proposal with the previously mentioned works is that the lower
reliability mode is selected by the user (via hints) when he decides that the data is not useful
until it is completed (i.e., check-pointing or partial results that will need to be recalculated).
All writes are persisted to the disk, so it may recover from failures, at the same rate than the
used PFS.

2.4 Conclusions and Future Work

Under Exascale constraints, reliability will be needed on the PFS layer if we want to keep the
storage costs and the energy used under control. Especially, when we use a high number of
clients the number of parity updates will increase.

We proposed on the previous deliverable a transparent cache layer that is able to reduce
the number of operations needed to update the parity on such environments. To do that, we
ensure that the writes are not overwriting so we can drop the read of old data from the parity
update workflow. This proposal improves the write performance of the standard workflow by
a 1.18x to a 2x depending on the RAID level (6 or 5, respectively). In this deliverable, we
show that applications gain substantial performance controlling the parity calculation as in the
Delayed Parity Proposal. Using reliability oriented application hints, we can improve the write
performance up to levels near a RAID-0. This behaviour is useful when partial data does not
need to be reliable until all the data writing is finished, e.g. big partial matrices.

References

[1] K. Bergman et al. Exascale computing study: Technology challenges in achieving exascale
systems. Technical report, Technical report, DARPA, 2008.

[2] P. J. Braam and R. Zahir. Lustre: A scalable, high performance file system. Cluster File
Systems, Inc, 2002.

[3] J. Carter, J. Borrill, and L. Oliker. Performance characteristics of a cosmology package on
leading hpc architectures. In HiPC 2004, pages 176–188. Springer.

16

D4.6 - Intermediate report on OmpSs extensions and storage tuning
Version 1.0

[4] Gluster. Glusterfs web page. http://www.gluster.org/, 2014.

[5] S. Kleiman, R. Sundaram, D. Doucette, S. Strange, and S. Viswanathan. Method for
writing contiguous arrays of stripes in a RAID storage system using mapped block writes,
2007. US Patent 7,200,715.

[6] R. Latham, C. Daley, W.-k. Liao, K. Gao, R. Ross, A. Dubey, and A. Choudhary. A case
study for scientific I/O: Improving the FLASH astrophysics code. Computational Science
& Discovery, 5(1):015001, 2012.

[7] Montblanc. D4.2 - Preliminary report on OmpSs extensions and storage tuning.

[8] D. Nagle, D. Serenyi, and A. Matthews. The panasas activescale storage cluster: Delivering
scalable high bandwidth storage. In SC’04.

[9] R. Nou, A. Miranda, and T. Cortes. Performance impacts with reliable parallel file systems
at exascale level. Vienna, Austria, 2015-08-24 2015.

[10] Panasas. PanFS RAID. https://www.panasas.com/products/panfs/PanFS_RAID.

[11] N. Rajovic, L. Vilanova, C. Villavieja, N. Puzovic, and A. Ramirez. The low power archi-
tecture approach towards exascale computing. Journal of Computational Science, 4(6):439
– 443, 2013.

[12] S. Savage and J. Wilkes. AFRAID: a frequently redundant array of independent disks. In
USENIX ATC’96.

[13] F. B. Schmuck and R. L. Haskin. GPFS: A shared-disk file system for large computing
clusters. In FAST’02, volume 2, page 19.

[14] D. Stodolsky, G. Gibson, and M. Holland. Parity logging overcoming the small write prob-
lem in redundant disk arrays. In ACM SIGARCH Computer Architecture News, volume 21,
pages 64–75, 1993.

[15] O. Villa, D. R. Johnson, M. O’Connor, E. Bolotin, D. Nellans, J. Luitjens, N. Sakharnykh,
P. Wang, P. Micikevicius, A. Scudiero, et al. Scaling the power wall: a path to exascale.
In SC’14.

17

