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Executive Summary

This document presents a methodology to select interesting regions within applications that
exhibit variety with respect to processor resource demands and are representative of a set of
benchmark applications. Such a selection of a benchmark subset allows for piecewise optimiza-
tion of an application by replaying the selected regions on a simulator in contrast to executing
all the applications thus reducing simulation time.

Firstly we describe briefly the chosen applications from PARSEC and lulesh, and then
present the detailed approach to select the regions. Next, we apply the proposed approach and
show how the selected regions can be used for benchmarking novel accelerators, and performance
tuning of big and LITTLE processors in heterogeneous architectures.
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1 Introduction

The following document reports on the selection of regions of interest within applications
to achieve two objectives. Firstly, with the advent of heterogeneity in processors like the
big.LITTLE architecture from ARM [Jef13], it is increasingly important to match the appli-
cation’s demands to the computational resources. Secondly, cycle accurate simulations are ex-
pensive in terms of the simulation time ranging from couple of hours to days [ESC05, PHC03].
Furthermore many applications exhibit similar computational resource demands [CAP+15].
Thus, there is a need for a methodology to identify interesting regions within applications that
exhibit diverse resource demands so that these representative regions can be used for (i) sim-
ulating new architectures and considerably reducing simulation time, and (ii) determining a
good match between application’s demands and the available heterogeneous resources such as
processors or accelerators. This work is part of WP6 looking at application’s co-design and
attempts to capture patterns within applications that can be used for the runtime/architec-
ture evaluation without executing the full application. This will also aid in the design of new
accelerators by providing interesting application regions for their performance evaluation.
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2 Methodology for Region Selection

The objective is to develop an approach to select regions of interest within applications that
are representative of both variety in terms of system resource demands and are similar to other
regions across and within applications to reduce simulation time. An overview of the proposed
approach is shown in Figure 1. Given an application mix, the proposed approach first derives
dynamic features from them using innermost loops as a basic block for a region. In addition to
the dynamic features that determine run-time demands of the program from system resources
such as memory, the proposed approach also uses static features that are inherent to the program
itself. Using both these feature sets, we use a clustering method to classify and group similar
regions and then derive representative regions from each cluster.

Innermost loops are pinpointed at the binary level after compiler optimizations such as loop
unroll or loop interchange have been applied. The analysis is performed using UVSQ’s MAQAO
tool suite which directly operate at the binary level. The original source code of the applications
is not required to perform the region selection.

The next sections detail each of the steps in the methodology from choosing the application
mix, selecting the features and the clustering technique used.

Dynamic 
features

MAQAO lprof

extract 
loop 

information
Static

features
MAQAO cqa

Applications

Clustering technique

Regions of Interest

Figure 1: Approach overview

2.1 Applications

Our methodology is applied to select regions of interests within applications that meet the
dual-goal of variety and representativeness. To meet the goal of variety, we need to choose
benchmarks that exert diverse performance demands with respect to system resources such
as cores and memory. Thus, we choose a diverse set of applications to as an input to our
methodology among which we apply the approach to select regions of interest. These diverse set
of applications are from two open-source code sets. We use 13 applications from the PARSEC
benchmark suite [Bie11] and the lulesh code [KKN13] to apply our methodology to a proxy
application.
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2.1.1 PARSEC

In this section, we describe the 13 programs that we use from the PARSEC suite. The de-
scription in this section is taken from the sources [BKSL08], [BL09] and [Bie11] by Bienia et
al.

blackscholes This application uses the Black-Scholes partial differential equation [BS73]

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0

where V is the price of an option and a function of the stock price S with volatility σ at time t
if the constant interest rate is r. This equation is used to calculate the prices for a portfolio of
European options and the prices are computed numerically as there is no closed-form solution
for the Black-Scholes equation. This application is bounded by the number of floating-point
computations performed by a computer.

bodytrack This is a computer vision application using multiple cameras to track a human
body with image sequences. It uses computer vision algorithms to extract these images from
the streaming video. It uses an annealed particle filter to track the movement of the body and
pin down the exact location of the body and posture on the image from the video stream. More
details about it’s implementation is found at [BKSL08].

canneal Canneal is representative of a kernel that has high demands with respect to memory
accesses. This kernel uses the simulated annealing algorithm to determine the routing within
chips and minimize this cost. It is widely used in computer aided design tools for large processor
designs. This minimization method swaps the routes within the processor circuit elements in a
psuedo-random manner and accepts the swap if the routing is minimized. Sometimes a routing
that increases the cost is also accepted to escape from local minima. The algorithm converges
when the number of swaps decreases to a stable value. A more detailed description of the
algorithm is presented in [Ban94].

dedup This kernel uses a combination of global and local compression called “deduplication”
to compress a data stream and achieve high compression ratios. This method of compression
has applications in mainstream backup storage systems [QD02] and hence is a useful benchmark
to include in this study. This kernel uses five pipeline stages and the first stage reads the input
stream and breaks it into coarse-grained chunks. The second stage uses rolling fingerprinting
to obtain fine-grained segments from these coarse-grained chunks. For each of these segments,
the third stage computes a hash-value which in turn is used by the fourth stage to compress
these values using the Ziv-Lempel algorithm. The fifth and final stage then assembles these
compressed values and hash values into the deduplicated output.

facesim This application employs physical simulation to compute a realistic animation of the
modeled face. With the increase in usage of computer games, this is a useful application as
it creates a more realistic virtual environment. It uses three kernels for computing the state
of the face mesh at the end of each iteration. The first kernel determines the steady state of
the simulated mesh by using the Newton-Raphson method to solve the nonlinear system of
equations. The second kernel iterates over all the tetrahedra of the mesh and determines the
velocity-independent forces acting on the simulation mesh. The third kernel solves the system
of linear equations from the two kernels using the conjugate-gradient algorithm.
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ferret This application does image similarity search and is based on the Ferret toolkit [LJW+06].
This is relevant as it represents the emerging Internet search engines for non-text data. It uses
six stages, with the first and last stage processing input and output respectively. The middle
four stages are, (i) segmentation of the query image, (ii) extracting features, (iii) indexing the
image database with candidate sets and (iv) ranking the database by computing a detailed
similarity estimate and ordering the database accordingly.

fluidanimate This application simulates an incompressible fluid for interactive animation
purposes by extending the Smoothed Particle Hydrodynamics (SPH) method. At each time-
step this application uses five kernels for computing the simulation, namely (i) rebuild spatial
index, (ii) compute densities, (iii) compute forces, (iv) handle collisions with scene geometry and
(v) update positions of particles. With the increasing adoption of physical simulation in real-
time animations and computer games, this application provides a good example representation.

raytrace This benchmark renders a 3D scene so that it can be seen on the screen by a human
observer. The basic idea of the ray tracing method is to shoot rays into a scene and compute
where they hit objects. A new set of rays is then created at each intersection point to simulate
effects such as reflections and refractions. To accelerate this process ray tracers usually use a
data structure that is called a Bounding Volume Hierarchy (BVH). A BVH organizes the entire
scene in a tree structure, which means that by descending down from the root ray tracers can
find ray-surface intersection points extremely fast. A more detailed description of the raytrace
workload with its core algorithms and data structures can be found in [BL09].

streamcluster The streamcluster application computes a predetermined number of medians
for a given stream of input points, such that each point is assigned to its nearest center. The
sum of squared distances metric is used to determine the nearest center and this benchmark
represents the organization of large amount of continuously streaming data in real-time such
as in data mining, or network intrusion detection. This application is memory intensive when
the dimensionality of the incoming data is low and it becomes computationally bound as the
dimensions increase.

swaptions This application determines the price of a portfolio of swaptions using the Heath-
Jarrow-Morton (HJM) framework [HJM90]. For a given class of models, this framework is useful
to determine the evolving interest rates for asset liability and risk management. As these models
are non-Markovian, price cannot be determined by solving the partial-differential equations and
thus is different from the blackscholes application. Therefore, this application uses Monte-Carlo
simulations to determine the price.

vips This application is based on the VASARI Image Processing System (VIPS) with the
benchmark derived from the print on demand service at the national gallery of London. It
includes typical image operations such as affine transformations and convolutions. The image
transformation step has 18 stages and is grouped into the following modules. The first module
is a crop step that removes 100 pixels from all edges. The next module is the shrink operation
that reduces the image by 10% and uses bilinear interpolation to compute the output. The next
module adjusts the white points and shadows to improve visual quality of the perceived image.
The last module sharpens the image by exaggerating the edges using a Gaussian blur filter.
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x264 This application is an Advanced Video Coding (AVC) video encoder and is based on
the ITU-T H.264 standard which is also the ISO/IEC MPEG-4. This improves over previous
standards by increasing the precision of the sample bit depth, using colours with higher reso-
lution and context adaptive binary arithmetic coding (CABAC). These improvements enhance
the quality of the output of H.264 encoders and hence are used in a wide-range of systems from
video conferencing equipment to high-definition movies.

Program inputs Table 1 presents the summary of the PARSEC benchmarks used in this
report along with their input size.

Program Domain
Problem Size

simlarge native

blackscholes Financial Analysis 65,536 options 10,000,000 options
bodytrack Computer Vision 4 frames, 4000 particles 261 frames, 4000 particles
canneal Engineering 400,000 elements 2,500,000 elements
dedup Enterprise Storage 184 MB data 672 MB data
facesim Animation 1 frame, 372,126 tetrahedra 100 frames, 372,126 tetrahedra
ferret Similarity Search 256 queries, 34,973 images 3,500 queries, 59,695 images
fluidanimate Animation 5 frames, 300,000 particles 500 frames, 500,000 particles
freqmine Data Mining 990,000 transactions 250,000 transactions
raytrace Rendering 3 frames, 1920 × 1080 pixels 200 frames, 1920 × 1080 pixels
streamcluster Data Mining 1 block, 16,384 points per block 5 blocks, 200,000 points per block
swaptions Financial Analysis 64 swaptions, 20,000 simulations 128 swaptions, 1,000,000 simulations
vips Media Processing 1 image, 2662 × 5500 pixels 18,000 × 18,000 pixels
x264 Media Processing 128 frames, 640 × 360 pixels 512 frames, 1920 × 1080 pixels

Table 1: Summary of PARSEC applications

2.1.2 lulesh

This section is taken from the sources, online [GPU], online [Lab] and the [LUL] report.

Computer simulations of a wide variety of science and engineering problems require modeling
hydrodynamics, which describes the motion of materials relative to each other when subject to
forces [HKG11]. Many important simulation problems of interest to DOE involve complex multi-
material systems that undergo large deformations. LULESH is a highly simplified application,
hard-coded to only solve a simple Sedov blast problem with analytic answers but represents
the numerical algorithms, data motion, and programming style typical in scientific C or C++
based applications.

LULESH represents a typical hydrocode and approximates the hydrodynamics equations
discretely by partitioning the spatial problem domain into a collection of volumetric elements
defined by a mesh. A node on the mesh is a point where mesh lines intersect. LULESH is
built on the concept of an unstructured hexahedral mesh with two centerings [K+12]. The
element centering (at the center of each hexahedral) stores thermodynamic variables, such as
energy and pressure. The nodal centering (where the corners of hexahedrals intersect) stores
kinematics values, such as positions and velocities. The simulation is run via a time stepping
algorithm followed by a time constraint calculation. The algorithm consists of two major steps:
advancing the node quantities, followed by advancing the element quantities. Advancement of
the node quantities requires calculating the nodal forces, which is the most compute intense
part of the simulation. To advance element quantities first kinematic values are calculated for
the elements based on the new nodal positions and velocities. We have used an input size of
503 for measuring the features.
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2.2 Feature Selection

To meet the goal of selecting regions of interest, there is a plethora of metrics to choose from
and this choice directly impacts the variety in the selected regions. To cater to the increasing
adoption of heterogeneity in the underlying architecture systems and the use of accelerators, we
select a range of dynamic and static features to capture both system level and program level
characteristics respectively.

2.2.1 Dynamic Features

The goal is to select a set of metrics that represent variety in terms of system resource demands
during execution. As the methodology needs to adapt to different systems being simulated, we
have the conflicting goal of selecting features that represent variety in terms of system usage
but at the same time the selected features should not be too dependent on the underlying
system characteristics. Thus, we abstract the performance metrics of the system in a coarse-
grained manner to achieve both variety and some level of independence from the underlying
micro-architecture.

To extract these performance features, we use the MAQAO toolchain of UVSQ [DBT+07].
This toolchain provides both static and dynamic analysis tools and users are able to characterize
the behaviour of programs at both function and loop level. We use loop level characterization
to identify the regions of interest, and use MAQAO lprof to measure the dynamic features.
MAQAO lprof uses value profiling at the assembly level and thus causes minimum overhead
to the actual run-time of the application. The hardware counters that are profiled are UN-
HALTED CORE CYCLES, INST RETIRED, BRANCH INST RETIRED, BRANCH MISS -
RETIRED, LLC REFERENCES and LONGEST LAT CACHE:MISS. These six values are in
turn used to compute the dynamic features, CPI, BMR and LMR using:

CPI =
UNHALTED CORE CY CLES

INST RETIRED

BMR =
BRANCH MISS RETIRED

BRANCH INST RETIRED

LMR =
LONGEST LAT CACHE : MISS

LLC REFERENCES

These three features collectively along with the static features are used to determine regions
of interest with varying resource demands from front end of the pipeline to memory related
stalls.

2.2.2 Static Features

While dynamic features provide insights on system resource demands during execution it is
important to characterize programs independent of the underlying hardware. Such a static
analysis is useful when developing new hardware such as accelerators. We use the vectorization
ratio of floating point operations in a program as a static feature and derive this for all the
applications using MAQAO-CQA tool.

The vectorization ratio measures how well a region has been vectorized by the compiler.
Informally it compares the actual code to an optimally vectorized version of the code supposing
that no dependencies exist between instructions. To compute it, first we remove all the instruc-
tions that cannot be vectorized on the current ISA such as address computations, branches, or
calls. After this step, the instructions left are called vectorizable instructions: they are either
vector instructions or instructions for which a vector equivalent exist such as load, store or
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arithmetic operations on floats. The vectorization ratio is defined as the ratio between vector
instruction over vectorizable instructions.

MAQAO-CQA (MAQAO Code Quality Analyzer) is the MAQAO module addressing the
code quality issues [CRON+14]. Based on a detailed performance model, MAQAO-CQA (i)
returns a lower bound on the number of cycles needed to run a binary code fragment, (ii)
estimates performance gain if resources were optimally used. It processes the binary code stat-
ically, hence the binary code does not have to be executed for analysis and it assumes that
most of execution time is spent in loops. MAQAO-CQA compares a binary code against a
given machine model and determines the location of the performance bottlenecks. In order to
do so, some assumptions are made such as infinite loop trip count and the absence of dynamic
hazards such as denormalized numbers and so on. The analysis provide by MAQAO-CQA gives
a optimal upper-bound on performance, it is able to accurately detect performance bottlenecks
at the micro-processor front-end and arithmetic and logic units levels. For performance bottle-
necks caused by memory or cache delays MAQAO-CQA metrics need to be enriched with the
previously described dynamic features providing information about the memory latency.

To maintain consistency between the dynamic and static features being used across all
the applications, we use the loop identifiers from the MAQAO lprof tool as an input to the
MAQAO CQA tool to statically determine the vectorization ratio for the exact same loops that
the dynamic features were extracted. This consistency is easy to maintain as both lprof and
CQA tools internally use the MAQAO lua plugins.

2.3 Clustering Technique

Clustering is a statistical method to group related data and is used here to determine represen-
tative regions of interest from a set of benchmark applications. It groups similar regions into
the same cluster such that it suffices to perform simulations for a representative region from a
cluster rather than for the entire set of applications, thus saving machine time and man hours.

To cluster the regions of interest, we define similarity using the dynamic and static features
discussed above, and use the four metrics CPI, LMR, BMR and Vectorization ratio of floating
point operations (Vec. ratio FP). The clustering technique used is similar to the benchmark
subsetting methodology [dOCKA+14]. We use these to quantify the similarity between regions
and group them into the same cluster. There are multiple ways to compute the similarity using
distances between respective vectors. In our approach we use the K-means clustering which
uses the Euclidean distance to compute the distance. Automatic methods exist for selecting an
optimal K, such as the Elbow method that chooses K so it maximizes the inter-cluster variance
over total variance ratio. But in this deliverable, K was empirically selected to a value giving a
small number of performance classes easy to work with.

Metrics are not directly comparable. Before computing the distance between two vectors,
the vectors must be normalized so each performance metric has the same weight in the distance
computation. After normalization the distribution over each metric has zero mean and unit
variance.

Euclidean Distance The Euclidean distance between two n-dimensional vectors X and Y is
defined as the straight line distance between two points if the two vectors are viewed as single
points in a n-dimensional space:

distanceXY =

√√√√ n∑
i=1

(xi − yi)2
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2.3.1 Kmeans Clustering

The information presented in this section is taken from wikipedia [Wik].
We use the popular K-means [M+67] clustering approach to partition the regions across all

applications and select the regions of interest. K-means clustering aims to partition n observa-
tions into k clusters, where each of the n observations belongs to the cluster with the nearest
average distance from the cluster centroid, using the Euclidean distance, thus partitioning the
data space into Voronoi cells.

Given a set of n observations (x1, x2, · · · , xn), where each observation is a d-dimensional real
vector, k-means clustering aims to partition the n observations into k(≤ n) sets S1, S2, · · · , Sk
such that the sum of distances of each point in the cluster to the K center is minimized.

arg min
S

k∑
i=1

∑
x∈Si

‖x− µi‖
2

where µi is the mean of points in Si.
A common implementation of the k-means clustering algorithm involves iteratively refining

the clusters and updating the cluster centroids. Given an initial set of k means µ1, · · · , µk, the
algorithm alternates between the assignment and update steps [Mac02]. In the assignment step,
t, each of the n observations are assigned to the cluster which has the nearest mean,

S
(t)
i =

{
xp :

∥∥xp − µ(t)
i

∥∥2 ≤
∥∥xp − µ(t)

j

∥∥2 ∀j, 1 ≤ j ≤ k
}

where each xp is assigned to exactly one S(t) , even if it can be assigned to two or more of them.
The update step recomputes the centroids of the new clusters and updates them as the new
means to be used in the next assignment step,

µ
(t+1)
i =

1

|S(t)
i |

∑
xj∈S

(t)
i

xj

This algorithm stops when the clusters no longer change. The outcome of this algorithm depends
heavily on the initial values of the cluster centroids. We use a random selection of k observation
points among the n points to be the initial cluster centroids and we use the same seed to
reproduce the cluster allocation.

2.3.2 Principal Component Analysis

Principal Component Analysis (PCA) is a statistical method used to determine the useful
features from a large feature set [Jol]. This method reduces the dimensions of a data set by
exploring the correlation between similar variables and converting the set of non-correlated
variables into principal components. Each principal component is a linear combination of the
original variables. More formally, PCA converts n vectors X1, X2, · · · , Xn into m principal
components Y1, Y2, · · · , Ym such that:

Yi =

n∑
j=1

aijXj , aij ∈ R

where aij is the weight to map the vector X to Y. Such a transformation has two key properties:

V ar[Y1] > V ar[Y2] > · · ·V ar[Ym]

∀i = j, Cov[Yi, Yj ] = 0
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Thus these properties define the transformation such that the first principal component has the
largest possible variance. Each succeeding component in turn has the highest variance possible
under the constraint that they are not correlated to the previous components. This method
reduces the dimensionality of the data while controlling the amount of information that is lost
by keeping the components with maximum variance.

13
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3 Selected Regions and Analysis

3.1 Methodology Setup

We used data from 14 programs to apply our methodology, among which 13 programs are from
the PARSEC benchmark suite v3.0 and the 14th application is lulesh 2.0. The inputs to the
PARSEC benchmark are the native input data set and the lulesh program is executed with
input size of 503. We measured the data from MAQAO lprof by executing the application
on an Intel quad-core processor, i7-4770 CPU operating at 3.40GHz while the MAQAO tool
chain is being ported to the ARM architecture. This system has two separate L1 caches of
32KB each for instruction and data respectively. The shared L2 and L3 cache sizes are 256KB
and 8MB respectively. All the applications have been compiled with gcc version 4.2.4 with the
compilation flags, -O3 -g -funroll-loops and -fprefetch-loop-arrays.

To derive the dynamic features, MAQAO lprof tool is used twice. First, the necessary
hardware counters to be profiled are given as a separate list in a file using -hwc option and
the application profile data represented in MAQAO internal format is collected. Secondly, the
profiled information is derived from this data using either -d=SLX or -d=SFX to get loop level or
function level data in a comma separated value (csv) format with -ssv=on to additionally derive
sample information. In this study, loop level data was always used except for leaf functions that
contained no loops for which we fall back on function level data.

The output csv file from lprof is parsed to aggregate the dynamic features from different
threads and from different region invocation. Only regions that contribute to at least 1% of the
total execution time are kept. The system calls are parsed into a separate data sheet. Next,
among these application loops that contribute at least 1%, the loop ids as per the lua plugins
are parsed and are used as an input to the MAQAO cqa tool to derive the static features such
as vectorization ratio of floating point operations. The options used with the cqa tool are -l to
give the list of loop ids, -igp to ignore multiple paths in a loop and -ani to allow analysis of
non-innermost loops. Next, the two csv output files from lprof and cqa are merged together
based on the same loopid within an application. Finally the merged dynamic and static feature
set per application is again combined to form the complete feature data on which clustering is
applied.

We first discuss the hotspots per application reported by lprof after filtering out the regions
contributing less than 1% of the total application execution time. Next we discuss the clustering
technique applied to all the regions pertaining to a mix of all applications.

When profiling PARSEC and Lulesh to identify the hotspot regions, we always set the num-
ber of threads to one. When the benchmark uses a single thread the sum of hotspot’s REF -
XCLK is always less than 100%. Nevertheless, some PARSEC applications cannot run with a
single thread and require additional helper threads. For instance, the bodytrack benchmark re-
quires at least one Worker thread and one Model thread (cf. main.cpp@213:mainPthreads).
When the application runs with two or more threads, it is possible for the sum of REF XCLK
values to be larger than 100% because two regions can run concurrently.

3.2 Regions per application

In this section, we report the parsed and filtered lprof output csv files for all the regions within
each application, sorted in the increasing order of their execution time. The first column (func -
name) represents the function name of the application, the second column (src info) tells the
source line in the source code file name and the third column (REF XCLK) is the percentage
of the time spent by the loop out of the total execution time. If the function name and source
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line is repeated, it means the compiler has generated multiple binary loops for a single source
loop. This can happen in different scenarios such as loop versioning or loop splitting. For some
of the function names, the src info is empty, indicating either that lprof tool is not being able
to infer the exact source code line. For each application, the top two loops are described after
looking at the individual source codes.

3.2.1 bodytrack

The top most hot-spot in bodytrack application, LoadSet converts the image into binary using
the ConvertToBinary function. The second hot-spot FlexDownSample2, down samples image
by factor of two with simple anti-aliasing and involves read the entire image and writing half of
it back.

Bodytrack is an example of one PARSEC application requiring at least two threads. LoadSet
rans in the Work thread, whereas FlexDownSample2 rans in the Model thread.

func name src info REF XCLK

AsyncImageLoader::LoadSet 35,95@AsyncIO.cpp 67.84

FlexDownSample2 84,91@FlexTransform.h 24.20

FlexDownSample2 58,86@FlexTransform.h 24.11

ImageMeasurements::InsideError 46,109@ImageMeasurements.cpp 18.46

ImageMeasurements::InsideError 46,109@ImageMeasurements.cpp 9.22

ImageMeasurements::EdgeError 35,64@ImageMeasurements.cpp 7.03

ImageMeasurements::EdgeError 35,71@ImageMeasurements.cpp 6.68

FlexLoadBMP 5.85

BetaAnnealingFactor 60,533@BinaryImage.h 2.95

TrackingModelPthread::Exec 105,131@TrackingModelPthread.cpp 2.80

TrackingModelPthread::Exec 86,131@TrackingModelPthread.cpp 2.57

TrackingModelPthread::Exec 120,126@TrackingModelPthread.cpp 2.46

FlexLoadBMP 83,235@FlexIO.h 2.34

FlexDownSample2 46,111@FlexTransform.h 1.10

Table 2: Top hot regions for bodytrack

3.2.2 canneal

The top most hot-spot of canneal, create elem if necessary, first parses the database to check if
the element exists, else it creates it. The swap cost function is the second hot-spot of canneal
and computes the cost by determining the absolute value of the difference between the current
location and the new location.

3.2.3 dedup

The top hot-spot in the dedup kernel is the rabinseg function call that performs a lot of bit-
wise boolean arithmetic operations over vectors. The next hot-spot is the sha block data order
macro that performs a lot of bit-wise XOR and rotate computations.

3.2.4 facesim

The top hot-spot in the facesim application, namely, Add Force Differential function in the DI-
AGONALIZED FINITE VOLUME 3D class performs a significant amount of matrix transpose
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func name src info REF XCLK

netlist::create elem if necessary 259,2026@netlist.cpp 66.37

netlist elem::swap cost 80,533@netlist elem.cpp 38.33

netlist elem::swap cost 89,533@netlist elem.cpp 27.67

netlist elem::swap cost 195,215@netlist elem.cpp 10.00

netlist elem::swap cost 195,215@netlist elem.cpp 6.70

annealer thread::Run 195,215@annealer thread.cpp 5.66

netlist::create elem if necessary 259,2026@netlist.cpp 3.86

netlist::netlist 105,2267@netlist.cpp 3.57

annealer thread::Run 68,215@annealer thread.cpp 2.64

netlist elem::routing cost given loc 56,533@netlist elem.cpp 2.48

netlist elem::routing cost given loc 62,533@netlist elem.cpp 2.46

annealer thread::Run 195,215@annealer thread.cpp 1.12

Table 3: Top hot regions for canneal

func name src info REF XCLK

rabinseg 87,96@rabin.c 94.89

sha1 block data order 239,367@sha locl.h 91.67

pqdownheap 462,475@trees.c 21.18

deflate slow 1557,1642@deflate.c 17.66

deflate slow 1557,1663@deflate.c 10.82

TreeFind 29,34@tree.c 6.13

longest match 1027,1164@deflate.c 3.78

compress block 1084,1114@trees.c 2.74

build tree 669,690@trees.c 1.96

copy block 1216,1217@trees.c 1.79

gen bitlen 514,528@trees.c 1.62

rabinseg 72,85@rabin.c 1.22

DeleteMin 85,94@binheap.c 1.11

Table 4: Top hot regions for dedup

computations and vector arithmetic. The next hot-spot is the Update Position Based State
function call in the DIAGONALIZED FINITE VOLUME 3D class and performs singular value
decomposition and matrix determinant computation.

func name src info REF XCLK

PhysBAM::DIAGONALIZED FINITE VOLUME 3D 89,1096@DIAGONALIZED FINITE VOLUME 3D.cpp 25.96

PhysBAM::DIAGONALIZED FINITE VOLUME 3D 24,696@DIAGONALIZED FINITE VOLUME 3D.cpp 9.36

PhysBAM::DIAGONALIZED FINITE VOLUME 3D 30,617@DIAGONALIZED FINITE VOLUME 3D.cpp 7.48

PhysBAM::DEFORMABLE OBJECT 24,377@DEFORMABLE OBJECT.cpp 2.10

PhysBAM::DIAGONALIZED FACE 3D 129,629@DIAGONALIZED FACE 3D.h 1.61

PhysBAM::DIAGONALIZED FINITE VOLUME 3D 89,1094@DIAGONALIZED FINITE VOLUME 3D.cpp 1.57

PhysBAM::COLLISION PENALTY FORCES 18,870@locale facets.h 1.10

Table 5: Top hot regions for dedup
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3.2.5 ferret

The top most hot-spot of the ferret application is the image extract helper code that computes
the features for every image by first extracting boxes using the function call box set insert pxl,
followed by extracting colours and region size using map.rgn sz and finally assigns weights.
The second hot-spot is the image segment function call that is very memory intensive as it
first allocates each pixel as a region, and computes the maximum value among the red, green
and blue values with each of the neighbours, and finally merges similar neighbours into smaller
regions and assigns the mean colour.

func name src info REF XCLK

image extract helper 261,323@extract.c 23.39

image segment 402,439@srm.c 19.36

isOptimal 419,423@emd.c 17.13

find set 122,122@srm.c 14.77

dist L2 float 14.59

findBasicVariables 347,356@emd.c 14.23

russel 695,699@emd.c 13.98

image extract helper 298,305@extract.c 12.84

findBasicVariables 377,386@emd.c 12.65

LSH query bootstrap 217,257@LSH query.c 11.16

vertical 149,155@image.c 8.41

ckh alloc table 142,144@cuckoo hash.c 7.69

horizontal 60,102@image.c 7.36

horizontal 60,106@image.c 7.26

image extract helper 282,284@extract.c 6.42

vertical 144,159@image.c 6.41

LSH query bootstrap 257,257@LSH query.c 5.73

isOptimal 418,423@emd.c 5.15

ycc rgb convert 144,153@jdcolor.c 3.36

bucket sort 157,189@srm.c 3.23

image segment 246,353@srm.c 2.96

decode mcu 1059,1078@jdhuff.c 2.73

findLoop 545,607@emd.c 2.55

findBasicVariables 372,394@emd.c 2.47

image segment 246,471@srm.c 2.43

findBasicVariables 342,364@emd.c 2.35

image segment 485,494@srm.c 2.12

russel 690,699@emd.c 2.07

LSH query bootstrap 217,257@LSH query.c 2.07

jpeg idct 16x16 2561,2805@jidctint.c 2.00

jpeg idct islow 171,408@jidctint.c 1.79

dist L2 float 1.54

emdinit 214,218@emd.c 1.21

image segment 246,321@srm.c 1.15

cass result merge lists 284,284@util.c 1.11

Table 6: Top hot regions for dedup
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3.2.6 fluidanimate

The ComputeForcesMT function, is a compute intensive program involving square root, division
and multiplication of 3x3x3 vectors and hence takes up 50% of the execution time. The next hot-
spot ComputeDensitiesMT function also operates on 3x3x3 vectors but only does comparisons
and addition operations and some modulo-arithmetic to compute remainders.

func name src info REF XCLK

ComputeForcesMT 214,853@pthreads.cpp 44.79

ComputeDensitiesMT 341,751@pthreads.cpp 23.32

ComputeDensitiesMT 341,751@pthreads.cpp 15.42

ComputeForcesMT 214,853@pthreads.cpp 5.30

InitSim 229,254@pthreads.cpp 4.17

InitSim 48,383@pthreads.cpp 4.17

RebuildGridMT 555,629@pthreads.cpp 2.26

SaveFile 48,455@pthreads.cpp 2.08

AdvanceParticlesMT 346,1111@pthreads.cpp 1.47

Table 7: Top hot regions for fluidanimate

3.2.7 freqmine

The top most hot-spot of freqmine application is the FPArray scan2 DB and involves parsing
the entire data base stored in the form of a tree to determine the frequency count of an item.
The second hot-spot function, FPArray conditional pattern base traverses the FP tree to count
the patters formed by traversing the frequencies of individual items.

func name src info REF XCLK

FPArray scan2 DB 361,369@fp tree.cpp 16.41

FPArray conditional pattern base 309,310@fp tree.cpp 9.07

FP tree::insert 949,966@fp tree.cpp 8.49

FPArray scan2 DB 350,381@fp tree.cpp 7.02

transform FPTree into FPArray 105,172@fp tree.cpp 4.93

FPArray conditional pattern base 301,312@fp tree.cpp 4.61

FP tree::fill count 1035,1039@fp tree.cpp 3.77

transform FPTree into FPArray 155,166@fp tree.cpp 3.11

FP tree::FP growth 1241,1525@fp tree.cpp 2.00

Table 8: Top hot regions for freqmine

3.2.8 raytrace

The topmost hot-spot in the raytrace application is the tracer using bounding volume hierarchy
(BVH) and provides Axis Aligned Bounding Boxes (AABB) in space to infer whether the ray
should trace that volume in space or not. The TraverseBVH computes the different signs
of the ray directions involving lot of vector shuffle operations. The TraverseBVH calls the
RayPacketIntersectAABB function which determines if the ray packet intersects the AABB
and involves many vector comparison operations to compute min and max.
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func name src info REF XCLK

RTTL::TraverseBVH 10,784@BVH.hxx 30.33

RTTL::TraverseBVH 53,784@BVH.hxx 11.97

Context::renderFrame 66,702@render.cxx 8.52

RTTL::TraverseBVH 53,567@BVH.hxx 7.97

RTTL::TraverseBVH 10,784@BVH.hxx 5.99

std::map¡std::pair 154,985@stl map.h 5.00

std::map¡std::pair 154,985@stl tree.h 4.61

Context::renderFrame 78,703@render.cxx 3.44

Context::renderFrame 183,616@render.cxx 3.37

RTTL::BinnedAllDimsSaveSpace 46,784@BinnedAllDimsSaveSpace.cxx 2.72

Table 9: Top hot regions for raytrace

3.2.9 streamcluster

The clustering algorithm of streamcluster iteratively computes the cost until an improvement
less than a threshold value is reached. The pFL is the main function which in turn calls the
pgain function which computes the cost using the Euclidean distance and then assigns points
to centers.

func name src info REF XCLK

pFL 653,1207@streamcluster.cpp 100.00

streamCluster 1638,1641@streamcluster.cpp 23.11

SimStream::read 1763,1767@streamcluster.cpp 14.62

streamCluster 1633,1643@streamcluster.cpp 6.60

pFL 652,1207@streamcluster.cpp 6.41

pFL 652,653@streamcluster.cpp 5.49

pspeedy 653,703@streamcluster.cpp 1.67

Table 10: Top hot regions for streamcluster

3.2.10 swaptions

The top hot-spot function in swaptions applications involves calculating the Hamilton-Jacobi-
Bellman (HJB) path for a given input set of stock maturities. It first sequentially generates
random number which is 10% of the execution time and then generates the HJM paths using
the stochastic factors as inputs. The second hot-spot is the free dmatrix function which is used
to free memory for a two-dimensional vector.

func name src info REF XCLK

HJM SimPath Forward Blocking 73,154@HJM SimPath Forward Blocking.cpp 17.03

HJM SimPath Forward Blocking 73,162@HJM SimPath Forward Blocking.cpp 3.80

Discount Factors Blocking 392,395@HJM.cpp 3.60

HJM SimPath Forward Blocking 73,121@HJM SimPath Forward Blocking.cpp 2.16

HJM SimPath Forward Blocking 66,67@HJM SimPath Forward Blocking.cpp 1.06

Table 11: Top hot regions for swaptions
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3.2.11 vips

The image processing application vips has the top hot-spot as lintran gen function. This consists
of a switch case statement based on which a loop that performs vector arithmetic (multiplication
and addition) is called. The switch case is to resolve the different input and output data types
of vectors, among char, float, double and so on. The second hot-spot is imb XYZ2Lab which
does image quantization using vectors and also performs division operation.

func name src info REF XCLK

lintran gen 210,226@im lintra.c 12.84

imb XYZ2Lab 104,141@im XYZ2Lab.c 11.07

recomb buf 73,87@im recomb.c 8.6

imb Lab2XYZ 66,101@im Lab2XYZ.c 7.59

extract band 93,125@im extract.c 4.8

conv gen 344,344@im convsep.c 4.73

conv gen 344,344@im convsep.c 4.71

vips threadpool run 847,863@threadpool.c 4.65

extract band 93,125@im extract.c 4.57

imb Lab2LabQ 88,126@im Lab2LabQ.c 4.24

imb Lab2LabQ 88,126@im Lab2LabQ.c 4.01

conv gen 344,344@im convsep.c 3.38

affinei gen 184,323@im affine.c 3.26

imb LabS2LabQ 68,116@im LabS2LabQ.c 2.61

conv gen 344,344@im convsep.c 2.45

imb LabQ2Lab 68,99@im LabQ2Lab.c 2.40

imb LabQ2Lab 68,99@im LabQ2Lab.c 2.33

join bands 109,147@im gbandjoin.c 2.33

imb Lab2XYZ 66,101@im Lab2XYZ.c 2.33

imb LabQ2LabS 63,85@im LabQ2LabS.c 2.10

join bands 109,147@im gbandjoin.c 2.05

imb LabQ2disp 84,116@im LabQ2disp.c 1.26

lintra1 gen 145,165@im lintra.c 1.23

Table 12: Top hot regions for vips

3.2.12 x264

The first hot-spot is the block residual cabac code for the H.264 encoder and is a Context
Adaptive Binary Arithmetic Coder (CABAC). This function calls the cabac encode decision
function which is implemented in assembly and does boolean arithmetic operations for vectors.
The next hot-spot in x264 application is the pixel averaging code using SIMD extension and is
also implemented in x86 assembly using the SSE instruction set and is a vectorized code.

x264 has a very flat profile. Performance is distributed among many kernels and there are
no large hotspot loops or leaf functions. This kind of application is not the best fit for the
proposed methodology which focuses on large loops.

3.2.13 lulesh

The top-most function that takes 18% of the execution time is computing the hourglass modes.
The hour glass modes computation involves vector addition and multiplication. The imple-
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func name src info REF XCLK

block residual write cabac 3.79

block residual write cabac 3.72

x264 pixel avg2 w16 sse2 2.25

x264 mc chroma ssse3 1.74

x264 me search ref 1.46

x264 mb analyse intra 1.24

block residual write cabac 1.22

block residual write cabac 1.21

x264 mb analyse intra 1.09

x264 hpel filter ssse3 0.97

Table 13: Top hot regions for x264

mentation uses the Flanagan-Belytschko kinematic hourglass filter which is used commonly in
Lagrange finite element hydrocodes [HKG11]. The second hot-spot is the integrating function
that integrate the volumetric stress contributions for each element. This involves first collecting
the node coordinates into local arrays and then computing the normal vectors, involving vector
multiplication and addition.

func name src info REF XCLK

ZL28CalcFBHourglassForceForElemsR6DomainPdS1 50,991@lulesh.cc 18.20

ZL23IntegrateStressForElemsR6DomainPdS1 270,611@lulesh.cc 10.79

Z22CalcKinematicsForElemsR6DomainPddi 46,1594@lulesh.cc 10.68

ZL28CalcHourglassControlForElemsR6DomainPdd 270,1062@lulesh.cc 9.62

ZL31CalcMonotonicQGradientsForElemsR6DomainPd 46,1783@lulesh.cc 6.58

ZL18CalcEnergyForElemsPdS 46,2126@lulesh.cc 3.94

ZL15EvalEOSForElemsR6DomainPdiPii 611,2279@lulesh.cc 3.68

ZL18CalcEnergyForElemsPdS 46,2175@lulesh.cc 3.62

ZL28CalcMonotonicQRegionForElemsR6DomainiPdd 290,1947@lulesh.cc 3.23

ZL20CalcPressureForElemsPdS 54,2071@lulesh.cc 3.12

ZL15EvalEOSForElemsR6DomainPdiPii 2286,2288@lulesh.cc 2.86

ZL18CalcEnergyForElemsPdS 46,2198@lulesh.cc 2.54

ZL20CalcPressureForElemsPdS 2054,2055@lulesh.cc 1.83

ZL18CalcEnergyForElemsPdS 54,2138@lulesh.cc 1.13

Table 14: Top hot regions for lulesh

3.3 PCA and Clustering

PCA technique determines correlation between the features in a data set and remove strongly
correlated features, thus reducing the dimensionality of the data. We applied the PCA to the
four features used in our methodology, CPI, BMR, LMR and Vec. Ratio FP. Table 15 shows
the correlation among these features. As indicated by the values in the table, they are very
close to zero and hence the feature vectors chosen are not correlated to each other. Thus we
perform clustering using all of these four features.

We use R [R C13] to perform k-means clustering on the four-dimensional feature set of
all regions extracted from the 14 programs. Figure 2 plots the 243 regions clustered into five
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CPI BMR Vec. ratio FP LMR

CPI 1.00 -0.02 -0.10 0.22
BMR -0.02 1.00 -0.14 0.01
Vec. ratio FP -0.10 -0.14 1.00 -0.17
LMR 0.22 0.01 -0.17 1.00

Table 15: Correlation among features

clusters along the two principal component axes. The direction of the four feature vectors in
2-D space along the two principal components is also shown. As is seen from this plot, the five
clusters are along the three feature vectors. Next we discuss the regions of interest within each
cluster.

Figure 2: PCA analysis
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Application FunctionṄame srcinfo REF XCLK CPI BMR Vec. ratio (FP) LMR

x264 X264:x264 mc chroma ssse3 341 0.9190557806 0.0003436426 100 0.2496688742

x264 X264:x264 hpel filter ssse3 191 0.3170313369 0.008387698 100 0

lulesh2.0 LL:CalcPressureForElemsPd 2054,2055@lulesh.cc 1.83 (768) 0.7621006183 5.90772139186E-005 85.7142857143 0.0532241556

vips VI:lintran gen 210,226@im lintra.c 551 0.2850407061 2.99742221689E-005 61.5384615385 0.0423728814

vips VI:lintran gen 210,226@im lintra.c 533 0.2837128697 0 61.5384615385 0.0263157895

vips VI:lintran gen 210,226@im lintra.c 497 0.2844059044 5.96961466137E-005 61.5384615385 0.025862069

vips VI:lintran gen 210,226@im lintra.c 489 0.2843199557 8.98903337928E-005 61.5384615385 0.0526315789

vips VI:lintra1 gen 145,165@im lintra.c 53 0.4085622371 0 42.8571428571 0

vips VI:lintra1 gen 145,165@im lintra.c 52 0.4093173891 0 42.8571428571 0.0769230769

vips VI:lintra1 gen 145,165@im lintra.c 50 0.3935045317 0 42.8571428571 0.0666666667

vips VI:lintra1 gen 145,165@im lintra.c 46 0.4186807654 0 42.8571428571 0.0666666667

lulesh2.0 LL:CalcFBHourglassForceForElemsR6DomainPd.6 50,991@lulesh.cc 18.20 (7629) 0.4402804312 0.0007688544 39.696969697 0.6160849772

vips VI:imb Lab2XYZ 66,101@im Lab2XYZ.c 326 0.8236700077 0.0028558373 39.3442622951 0

vips VI:imb Lab2XYZ 66,101@im Lab2XYZ.c 322 0.832627608 0.0017020311 39.3442622951 0

vips VI:imb Lab2XYZ 66,101@im Lab2XYZ.c 302 0.828379526 0.0019522278 39.3442622951 0.1428571429

vips VI:imb Lab2XYZ 66,101@im Lab2XYZ.c 299 0.8192891068 0.0018150879 39.3442622951 0

vips VI:imb Lab2XYZ 66,101@im Lab2XYZ.c 1 0.568627451 0 39.3442622951 0

ferret FT:isOptimal 419,423@emd.c 9178 0.5166726157 0.048057535 33.3333333333 0.0196078431

ferret FT:russel 695,699@emd.c 7490 0.6865351688 0.0444591904 33.3333333333 0.0183486239

ferret FT:isOptimal 418,423@emd.c 2762 0.5585140904 0.0676456573 33.3333333333 0

vips VI:imb Lab2LabQ 88,126@im Lab2LabQ.c 182 0.3934977578 0.0029943855 33.3333333333 0.04

vips VI:imb Lab2LabQ 88,126@im Lab2LabQ.c 179 0.3925960082 0.003115653 33.3333333333 0

vips VI:imb Lab2LabQ 88,126@im Lab2LabQ.c 177 0.3898070718 0.0039810898 33.3333333333 0.0344827586

vips VI:imb Lab2LabQ 88,126@im Lab2LabQ.c 172 0.3927655377 0.0044676098 33.3333333333 0

ferret FT:t out 387,393@ferret-pthreads.c 0 1.8333333333 0 33.3333333333 0

vips VI:imb XYZ2Lab 104,141@im XYZ2Lab.c 475 0.7312719733 0.0009567089 29.0909090909 0.0224719101

Table 16: High vectorization ratio regions

Application FunctionṄame srcinfo REF XCLK CPI BMR Vec. ratio (FP) LMR

canneal CA:annealer thread::Run 195,215@annealer thread.cpp 1234 30.252245509 0 0 0.9644902635

canneal CA:netlist elem::routing cost given loc 56,533@netlist elem.cpp 179 41.8503401361 0 0 0.9460784314

canneal CA:netlist elem::routing cost given loc 62,533@netlist elem.cpp 177 43.8111888112 0.019379845 0 0.8254716981

canneal CA:netlist elem::swap cost t 89,533@netlist elem.cpp 6035 47.464974142 0.0139671649 0 0.7870351555

canneal CA:netlist elem::swap cost t 80,533@netlist elem.cpp 8362 32.7072727273 0.0059490085 0 0.7054772056

Table 17: Regions for big processors:memory-bound

3.4 Regions of Interest

3.4.1 Accelerators: High vectorization ratio

Among the four features, the floating point vectorization feature classifies interesting regions
within applications that will benefit from the use of accelerators. Within these regions, regions
that have a high floating point vectorization ratio classify as more suitable for accelerators
because a high vectorization ratio indicates the code benefits from the use of a specialized vector
processing unit and is limited by the current computational capabilities of the general processor.
Such regions identified by applying our methodology are shown in Figure 3 and Table 16. The
regions here belong to x264 application, lulesh and the vips program. These programs do image
processing or intensive numerical computation which are usually present good opportunities for
vectorization. Thus these regions can be used by the architectural simulation team to perform
simulations of accelerators.

3.4.2 Regions for executing on big processor: memory bound

As indicated in Table 17, this cluster consists of regions with high CPI, and high LMR. The
high CPI indicates that these regions are not optimal either due to the style of code or due to
the resource demands from processing. The regions with high LMR that have extremely large
CPI, especially from canneal application, are regions that can be optimized for the big processor
by increasing the memory bandwidth.

The regions of this cluster are shown in Figure 4. As indicated the high CPI and high
LMR regions are more suitable for big processor and there is a need to optimize the memory
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Figure 4: Regions for big processors:memory-bound
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Application FunctionṄame srcinfo REF XCLK CPI BMR Vec. ratio (FP) LMR

x264 X264:x264 mb analyse intra 243 0.5878063011 0.3057658707 0 0

rtview RT:RTTL::TraverseBVH 10,784@BVH.hxx 363 0.7363057325 0.2955558973 0 0.652173913

rtview RT:RTTL::TraverseBVH 10,784@BVH.hxx 2233 1.9745778007 0.1977838494 0 0.6512488437

dedup DD:build tree 669,690@trees.c 68 1.4061281337 0.188952381 0 0

ferret FT:image segment 485,494@srm.c 48 1.2847619048 0.1638168781 0 0

x264 X264:block residual write cabac 745 0.6863478039 0.1633888048 0 0

freqmine FM:FP tree::fill count 1035,1039@fp tree.cpp 3074 0.8868042849 0.1610130031 0 0.5277777778

rtview RT:RTTL::TraverseBVH 53,784@BVH.hxx 4459 0.5860455114 0.1454337053 7.7586206897 0.6882933709

ferret FT:russel 654,661@emd.c 517 1.5008998691 0.1406214039 16.6666666667 0

x264 X264:block residual write cabac 732 0.5420502586 0.1357829524 0 0

canneal CA:netlist::create elem if necessary 259,2026@netlist.cpp 4784 10.193207922 0.1287188828 0 0.4504034761

ferret FT:image segment 246,471@srm.c 55 1.2087912088 0.1274883524 5.8823529412 0.1111111111

ferret FT:findBasicVariables 372,394@emd.c 1322 1.2472714689 0.1244253427 0 0

canneal CA:netlist::create elem if necessary 259,2026@netlist.cpp 278 3.6967769296 0.1242019733 0 0.0833333333

dedup DD:scan tree 723,740@trees.c 32 0.9657258065 0.1139364303 0 0

streamcluster SC:pFL 652,1207@streamcluster.cpp 697 0.7956336966 0.1123361144 13.0434782609 0.71875

dedup DD:pqdownheap 462,475@trees.c 734 0.8729954181 0.1017937075 0 0

freqmine FM:transform FPTree into FPArray 105,172@fp tree.cpp 4019 0.6430468816 0.0999479342 0 0.1838006231

canneal CA:annealer thread::Run 68,215@annealer thread.cpp 575 1.7088576363 0.0975449652 25 0.3433962264

ferret FT:findBasicVariables 347,356@emd.c 7625 0.9413249097 0.0919153111 25 0

ferret FT:jpeg idct islow 194,290@jidctint.c 9 0.4208289054 0.0843373494 0 0.5

freqmine FM:FPArray conditional pattern base 301,312@fp tree.cpp 3754 0.526147384 0.0779483231 0 0.2259887006

Table 18: Region for executing on big processor: branch-bound

imbalance as pointed out by these regions.

3.4.3 Region for executing on big processor: branch bound

The third cluster consists of regions that have a high branch misprediction ratio compared to
all the other clusters. While the other three clusters have BMR less than 0.1, there are many
regions within this cluster with BMR greater than 0.1. Hence such regions are more suitable
for the big processor as it implements complex out-of-order execution pipelines and hardware
branch prediction engines. Thus the top regions from this cluster as shown in the below table
can be used for micro-architecture optimizations and simulations to improve the performance
of the big processor in the big.LITTLE heterogeneous system.

While Table 18 lists the clusters by sorting the BMR, the top ten regions are plotted in
Figure 5.

3.4.4 Regions for little processor

Regions that have a high LMR but do not impact the CPI of the processor perform efficiently.
Thus these regions can be used to save energy by executing on the little processor. Regions
in this group can be executed on the little processor and save energy as the CPI is very low
anyway.

While the second region had high LMR along with a high CPI, this cluster of regions have
high LMR with low CPI as shown in Figure 6 and Table 6. Thus, these regions can be used for
simulation of efficient memory request processing within a CPU.

3.4.5 Balanced Cluster

The central cluster is more suitable for low overhead processing as this consists of regions in the
center of the PCA clustering plot shown in Figure 2 and listed in Table 20. These regions do
not have a high value in any of the four features, namely, CPI, LMR, BMR and floating point
vectorization ratio. Thus these regions represent balanced code in the programs and can be
used to simulate new architecture features and ensure that the new features have not disturbed
the balanced code.
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Figure 5: Region for executing on big processor: branch-bound

Application FunctionṄame srcinfo REF XCLK CPI BMR Vec. ratio (FP) LMR

dedup DD:TreeFind 29,34@tree.c 22 2.7049180328 0.0013157895 0 1

ferret FT:horizontal 60,106@image.c 69 0.4741264082 0.0020214586 12.8205128205 1

ferret FT:image extract helper 282,284@extract.c 14 0.435499515 0.0036452005 0 1

bodytrack BT:AsyncImageLoader::LoadSet 35,95@AsyncIO.cpp 116 0.3092598376 0.0030959752 0 1

ferret FT:jpeg idct 16x16 2561,2805@jidctint.c 19 0.2973202892 0 0 1

streamcluster SC:pspeedy 653,703@streamcluster.cpp 182 1.238018849 0 0 0.9889867841

streamcluster SC:pFL 653,1207@streamcluster.cpp 9753 1.2738193169 0.0006416534 0 0.9865577889

streamcluster SC:pFL 653,1207@streamcluster.cpp 12486 1.2716008448 0.0005942845 0 0.9822635135

streamcluster SC:pFL 653,1207@streamcluster.cpp 14007 1.2722553763 0.0006505123 0 0.9818769849

streamcluster SC:pFL 653,1207@streamcluster.cpp 12459 1.2697582655 0.0003634759 0 0.981864864

streamcluster SC:pFL 653,1207@streamcluster.cpp 12594 1.2694558073 0.000520156 0 0.978792294

streamcluster SC:pspeedy 653,703@streamcluster.cpp 180 1.2594473791 0.002020202 0 0.9782135076

streamcluster SC:pspeedy 653,703@streamcluster.cpp 193 1.24 0.0018382353 0 0.9754601227

facesim FS:PhysBAM::DIAGONALIZED FACE 3D 129,629@DIAGONALIZED FACE 3D.h 969 0.6573213499 0.0014644351 7.3333333333 0.9751552795

streamcluster SC:pFL 652,653@streamcluster.cpp 762 0.5229265896 0.0001711157 0 0.9705329154

streamcluster SC:pFL 652,653@streamcluster.cpp 604 0.5158136721 0 0 0.947284345

streamcluster SC:pFL 652,653@streamcluster.cpp 824 0.5146339399 6.24804748516E-005 0 0.9322228604

streamcluster SC:pFL 652,653@streamcluster.cpp 799 0.5193271632 6.86553842985E-005 0 0.9278350515

facesim FS:PhysBAM::DIAGONALIZED FINITE VOLUME 3D 30,617@DIAGONALIZED FINITE VOLUME 3D.cpp 4511 0.3457450976 0.0002176173 11.9047619048 0.9227272727

ferret FT:LSH query bootstrap 217,257@LSH query.c 231 0.4423296725 0.060362173 0 0.9039548023

streamcluster SC:pFL 652,653@streamcluster.cpp 789 0.5190960751 3.44613688056E-005 0 0.9032059186

streamcluster SC:streamCluster 1633,1643@streamcluster.cpp 14 2.3101604278 0 28.5714285714 0.9

canneal CA:netlist elem::swap cost t 195,215@netlist elem.cpp 1462 0.9595214282 0.0034115994 0 0.8894577171

dedup DD:rabinseg 87,96@rabin.c 390 0.6449512995 0 0 0.8823529412

canneal CA:netlist elem::swap cost t 195,215@netlist elem.cpp 2181 1.7105886102 0 0 0.8784828592

streamcluster SC:pFL 652,1207@streamcluster.cpp 938 0.796890914 0.0897373541 13.0434782609 0.8552437223

streamcluster SC:pFL 652,1207@streamcluster.cpp 948 0.789859617 0.0897717296 13.0434782609 0.8409415121

streamcluster SC:pFL 652,1207@streamcluster.cpp 901 0.7732187784 0.0711707065 13.0434782609 0.8173652695

ferret FT:dist L2 float@0x424790 1629 0.6177589656 0.000031375 0 0.8153590898

streamcluster SC:pFL 652,1207@streamcluster.cpp 842 0.7876497548 0.0789865872 13.0434782609 0.8148984199

canneal CA:netlist::netlist 105,2267@netlist.cpp 257 5.5481727575 0.0199700449 0 0.7716049383

fluidanimate FA:AdvanceParticlesMT 346,1111@pthreads.cpp 773 1.0676538677 0.058685446 8.3333333333 0.7480848556

rtview RT:RTTL::TraverseBVH 53,567@BVH.hxx 2971 0.340815553 0.0147892484 0 0.7232704403

vips VI:imb LabQ2disp 84,116@im LabQ2disp.c 45 0.28290138 0 0 0.6315789474

vips VI:imb LabQ2disp 84,116@im LabQ2disp.c 54 0.2862836267 0 0 0.619047619

ferret FT:LSH query bootstrap 257,257@LSH query.c 640 0.3189199314 0.0005933147 0 0.6040609137

facesim FS:PhysBAM::DIAGONALIZED FINITE VOLUME 3D 24,696@DIAGONALIZED FINITE VOLUME 3D.cpp 5648 0.6982649098 0.0415843228 11.8483412322 0.5646502836

fluidanimate FA:RebuildGridMT 555,629@pthreads.cpp 1187 0.8471886495 0.0260629304 0 0.5580469405

vips VI:imb LabQ2disp 84,116@im LabQ2disp.c 37 0.2783729494 0.0024449878 0 0.5

freqmine FM:transform FPTree into FPArray 155,166@fp tree.cpp 2534 0.4815067513 0.0358818723 0 0.4614886731

lulesh2.0 LL:CalcHourglassControlForElemsR6DomainPdd 270,1062@lulesh.cc 9.62 (4033) 0.4432769158 0.0028604119 2.5039123631 0.460627895

fluidanimate FA:ComputeDensitiesMT 341,751@pthreads.cpp 8098 0.4877603215 0.0467830841 3.125 0.4470149254

fluidanimate FA:ComputeDensitiesMT 341,751@pthreads.cpp 12249 0.5795381102 0.0677742219 3.125 0.4463190184

ferret FT:image extract helper 298,305@extract.c 28 0.3734817814 0.008605852 0 0.4444444444

Table 19: Regions for little processor
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Figure 6: Regions for little processor

Application FunctionṄame srcinfo REF XCLK CPI BMR Vec. ratio (FP) LMR

lulesh2.0 LL:CalcHourglassControlForElemsR6DomainPdd 270,1062@lulesh.cc 4033 0.4432769158 0.0028604119 2.5039123631 0.460627895

lulesh2.0 LL:CalcMonotonicQGradientsForElemsR6DomainPd 46,1783@lulesh.cc 2757 0.5500650347 0.0047250859 6.7885117493 0.3174767322

lulesh2.0 LL:CalcEnergyForElemsPd 46,2126@lulesh.cc 1652 0.4719294626 0.007744916 10 0.0076481836

lulesh2.0 LL:EvalEOSForElemsR6DomainPdiPii 611,2279@lulesh.cc 1542 1.0130426319 0.0002629503 0 0.1072453977

lulesh2.0 LL:CalcEnergyForElemsPd 46,2175@lulesh.cc 1519 0.3944571938 0.0045034834 9.5238095238 0.0013351135

lulesh2.0 LL:CalcMonotonicQRegionForElemsR6DomainiPdd 290,1947@lulesh.cc 1353 0.5359928812 0.0020440974 15.3110047847 0.4151421334

lulesh2.0 LL:CalcPressureForElemsPdS S S S S dddiPi 54,2071@lulesh.cc 1306 0.3303691336 0.0033421759 0 0.0045857536

lulesh2.0 LL:CalcEnergyForElemsPd 46,2198@lulesh.cc 1065 0.4300013526 0.0095311754 16.6666666667 0

lulesh2.0 LL:IntegrateStressForElemsR6DomainPd 270,611@lulesh.cc 4521 0.4512985477 0.0035608309 10.3144654088 0.3444444444

fluidanimate FA:ComputeForcesMT 214,853@pthreads.cpp 23528 0.4900858963 0.0469587393 4.958677686 0.3136682243

facesim FS:PhysBAM::DIAGONALIZED FINITE VOLUME 3D 89,1096@DIAGONALIZED FINITE VOLUME 3D.cpp 15654 0.3279776605 0.0006733533 9.5238095238 0.2273301194

freqmine FM:FPArray scan2 DB 361,369@fp tree.cpp 13374 0.4587669591 0.0344150449 0 0.1665043817

fluidanimate FA:ComputeDensitiesMT 341,751@pthreads.cpp 12249 0.5795381102 0.0677742219 3.125 0.4463190184

rtview RT:RTTL::TraverseBVH 10,784@BVH.hxx 11301 0.4742128752 0.0621480709 4.7008547009 0.3613138686

fluidanimate FA:ComputeDensitiesMT 341,751@pthreads.cpp 8098 0.4877603215 0.0467830841 3.125 0.4470149254

freqmine FM:FPArray conditional pattern base 309,310@fp tree.cpp 7391 0.5541804526 0.0376355603 0 0.1392405063

swaptions SW:HJM SimPath Forward Blocking 73,154@HJM SimPath Forward Blocking.cpp 7364 0.2764791807 0.0005751513 9.0909090909 0

freqmine FM:FP tree::insert 949,966@fp tree.cpp 6917 0.8277618173 0.0500976234 0 0.0273224044

freqmine FM:FPArray scan2 DB 350,381@fp tree.cpp 5720 0.5048423569 0.0437303697 0 0.351758794

rtview RT:Context::renderFrame 66,702@render.cxx 3174 0.9039223656 0.0011769807 19.943019943 0.0891719745

fluidanimate FA:ComputeForcesMT 214,853@pthreads.cpp 2783 0.3657655262 0.0428191841 0 0.2899628253

freqmine FM:transform FPTree into FPArray 155,166@fp tree.cpp 2534 0.4815067513 0.0358818723 0 0.4614886731

bodytrack BT:ImageMeasurements::InsideError 46,109@ImageMeasurements.cpp 2062 0.3856999884 0.0002790583 18.1818181818 0.000602047

rtview RT:std::map 154,985@stl map.h 1862 3.3720343532 0.0230309423 0 0.0043050431

rtview RT:std::map 154,985@stl tree.h 1718 3.4081854401 0.0241397472 0 0.0044368601

swaptions SW:HJM SimPath Forward Blocking 73,162@HJM SimPath Forward Blocking.cpp 1644 0.3500613144 0.000172117 0 0

freqmine FM:FP tree::FP growth 1241,1525@fp tree.cpp 1634 0.3866509282 0.0025129529 0 0.0217391304

bodytrack BT:ImageMeasurements::EdgeError 35,64@ImageMeasurements.cpp 1572 0.4331032842 0.0041584321 18.1818181818 0

swaptions SW:Discount Factors Blocking 392,395@HJM.cpp 1558 0.3012216265 0.0038717263 0 0

bodytrack BT:ImageMeasurements::EdgeError 35,71@ImageMeasurements.cpp 1494 0.3710617909 0.0014191062 18.1818181818 0.0002366304

ferret FT:findLoop 545,607@emd.c 1366 0.7222204974 0.059575519 0 0

rtview RT:Context::renderFrame 78,703@render.cxx 1280 0.7431274816 8.57485851483E-005 14.4578313253 0.3823529412

facesim FS:PhysBAM::DEFORMABLE OBJECT 24,377@DEFORMABLE OBJECT.cpp 1269 0.3710384528 0.0003071442 7.4626865672 0.1705913134

ferret FT:findBasicVariables 342,364@emd.c 1258 0.9092810071 0.0682310636 0 0

rtview RT:Context::renderFrame 183,616@render.cxx 1256 0.4226514098 0.0090270812 6.7264573991 0

ferret FT:LSH query bootstrap 217,257@LSH query.c 1246 0.8241507871 0.0536725933 0 0.304652645

ferret FT:russel 690,699@emd.c 1109 0.7031576651 0.0241507004 0 0.0606060606

rtview RT:RTTL::BinnedAllDimsSaveSpace::recursiveBuildFast 46,784@BinnedAllDimsSaveSpace.cxx 1013 0.497790848 0.0048529832 13.7931034483 0.2108843537

Table 20: Balanced regions: Pot-pourri
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Application FunctionṄame REF XCLK CPI BMR LMR

libm-2.12.so ieee754 exp 54.40 (9331) 0.4130141556 0.0032722003 0.5609756098

SYSTEM CALL copy user generic string 48.98 (24) 37.875 0 0.9010989011

libm-2.12.so ieee754 log 39.61 (896) 0.6709184771 0.0326533273 0.0212765957

SYSTEM CALL compaction alloc 34.58 (37) 1.250734574 0.0008532423 0.3718244804

SYSTEM CALL brk limit 25.58 (11) 0.8375796178 0 1.5

libc-2.12.so nrand48 r 25.00 (53) 0.2973467521 0.0037792895 0

libc-2.12.so GI printf fp 25.93 (7) 0.619047619 0.0241935484 1.3333333333

libc-2.12.so IO vfscanf 24.16 (803) 0.3432752871 0.0032326651 0

libc-2.12.so GI strtof l internal 24.01 (798) 0.528601144 0.0081367274 0

SYSTEM CALL brk limit 23.96 (86) 0.7121702915 0.0002826456 0.1081081081

libm-2.12.so ieee754 log 22.80 (9859) 0.7318299228 0.0693529854 0

libm-2.12.so ieee754 exp 22.34 (265) 0.3630233212 6.37795777792E-005 0

SYSTEM CALL compaction alloc 21.35 (19) 1.2474048443 0.003236246 0.364806867

SYSTEM CALL copy user generic string 20.22 (18) 21.48 0 0.1779661017

libc-2.12.so GI memcpy 20.56 (22) 1.6175115207 0 0.2150537634

SYSTEM CALL copy user generic string 18.60 (8) 22.3529411765 0 0.4242424242

libc-2.12.so drand48 iterate 18.87 (40) 0.2629834254 0 0

SYSTEM CALL brk limit 16.33 (8) 0.8333333333 0 2

libm-2.12.so ieee754 exp 16.49 (7130) 0.3753622543 0.0004671902 0

libm-2.12.so dubsin 16.61 (158) 0.7928035982 0.0005068424 1.5

SYSTEM CALL clear page c e 15.38 (2) 0 0 0

libc-2.12.so IO vfprintf 14.81 (4) 1.4941860465 0.0132450331 1

SYSTEM CALL clear page c e 12.50 (6) 24.4285714286 0 2

libstdc++.so.6.0.13 std::istream::sentry::sentry 10.42 (5) 0.3398058252 0 0

libstdc++.so.6.0.13 std::basic streambuf 10.42 (5) 0.4843049327 0 0

libm-2.12.so ieee754 logf 10.65 (1826) 0.4657000501 0.0056524332 0.7741935484

Table 21: System Call intensive regions

3.4.6 System calls

Apart from regions within user code of programs, we also keep track of hot-spot system call
regions with greater than 10% execution time within an application. Table 21 lists the regions,
The numbers within brackets in the REF CLK column indicate the number of samples and thus
also indicate the execution time of the system call with respect to absolute time. Analysis of
these system calls reveals that the exponential function and logarithmic computation are very
expensive and are called from the PARSEC benchmark blackscholes. In terms of CPI, the copy
function is very expensive is a good region to simulate performance optimizations with respect
to page accesses and misses. With respect to last level cache misses the copy page system call
is very expensive as expected.
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4 Conclusions and Future Steps

In this document we have reported on the methodology for selection of interesting regions within
programs for both variety in terms of processor resource demands and accelerators. We first
detail the applications chosen and the proposed approach in Section 2. In Section 3, we apply
the approach and discuss the interesting regions selected and their application in the project.

Future work will involve porting of the tools used in the approach to ARM architecture and
then comparing the selected regions with the current list.
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Acronyms and Abbreviations

• BMR: Branch Misprediction Ratio

• BT: bodytrack program

• CA: canneal program

• CPI: Cycles per Instruction

• CQA: Code Quality Analyzer

• DOE: Department of Energy

• FA: fluid animate program

• FM: freqmine program

• FT: ferret program

• LL: lulesh proxy application

• LMR: Last latency cache Miss Ratio

• LULESH: Livermore Unstructured Lagrange Explicit Shock Hydrodynamics

• MAQAO: Modular Assembly Quality Analyzer and Optimizer

• RT: raytrace program

• SC: streamcluster program

• SW: swaptions program

• Vec. Ratio. FP: Vectorization Ratio Floating Point

• VI: vips program
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